Informer2020-main.zip
资源来源:本地上传资源
文件类型:ZIP
大小:115.86MB
评分:
5.0
上传者:java1314777
更新日期:2025-02-22
Informer模型实战案例(代码+数据集+参数讲解)
资源文件列表(大概)
文件名
大小
.idea/
-
.idea/.gitignore
50B
.idea/aws.xml
304B
.idea/Informer2020-main.iml
482B
.idea/inspectionProfiles/
-
.idea/inspectionProfiles/profiles_settings.xml
174B
.idea/inspectionProfiles/Project_Default.xml
1.27KB
.idea/misc.xml
185B
.idea/modules.xml
293B
.idea/workspace.xml
6.02KB
checkpoints/
-
checkpoints/informer_custom_ftMS_sl126_ll64_pl24_dm512_nh8_el2_dl1_df2048_atprob_fc5_ebtimeF_dtTrue_mxTrue_test_0/
-
checkpoints/informer_custom_ftMS_sl126_ll64_pl24_dm512_nh8_el2_dl1_df2048_atprob_fc5_ebtimeF_dtTrue_mxTrue_test_0/checkpoint.pth
62.77MB
checkpoints/informer_custom_ftMS_sl126_ll64_pl4_dm512_nh8_el2_dl1_df2048_atprob_fc5_ebtimeF_dtTrue_mxTrue_test_0/
-
checkpoints/informer_custom_ftMS_sl126_ll64_pl4_dm512_nh8_el2_dl1_df2048_atprob_fc5_ebtimeF_dtTrue_mxTrue_test_0/checkpoint.pth
62.77MB
data/
-
data/__init__.py
1B
data/__pycache__/
-
data/__pycache__/__init__.cpython-39.pyc
153B
data/__pycache__/data_loader.cpython-39.pyc
8.79KB
data/data_loader.py
13.42KB
environment.yml
198B
ETTh1-Test.csv
38.37KB
ETTh1.csv
2.47MB
exp/
-
exp/__init__.py
-
exp/__pycache__/
-
exp/__pycache__/__init__.cpython-39.pyc
152B
exp/__pycache__/exp_basic.cpython-39.pyc
1.54KB
exp/__pycache__/exp_informer.cpython-39.pyc
7.75KB
exp/exp_basic.py
875B
exp/exp_informer.py
10.83KB
forecsat.csv
265B
main_informer.py
7.26KB
models/
-
models/__init__.py
-
models/__pycache__/
-
models/__pycache__/__init__.cpython-39.pyc
155B
models/__pycache__/attn.cpython-39.pyc
5.02KB
models/__pycache__/decoder.cpython-39.pyc
1.95KB
models/__pycache__/embed.cpython-39.pyc
5.04KB
models/__pycache__/encoder.cpython-39.pyc
3.49KB
models/__pycache__/model.cpython-39.pyc
4.78KB
models/attn.py
6.03KB
models/decoder.py
1.73KB
models/embed.py
4.04KB
models/encoder.py
3.47KB
models/model.py
7.05KB
results/
-
results/informer_custom_ftMS_sl126_ll64_pl24_dm512_nh8_el2_dl1_df2048_atprob_fc5_ebtimeF_dtTrue_mxTrue_test_0/
-
results/informer_custom_ftMS_sl126_ll64_pl24_dm512_nh8_el2_dl1_df2048_atprob_fc5_ebtimeF_dtTrue_mxTrue_test_0/metrics.npy
148B
results/informer_custom_ftMS_sl126_ll64_pl24_dm512_nh8_el2_dl1_df2048_atprob_fc5_ebtimeF_dtTrue_mxTrue_test_0/pred.npy
12.13KB
results/informer_custom_ftMS_sl126_ll64_pl24_dm512_nh8_el2_dl1_df2048_atprob_fc5_ebtimeF_dtTrue_mxTrue_test_0/true.npy
12.13KB
results/informer_custom_ftMS_sl126_ll64_pl4_dm512_nh8_el2_dl1_df2048_atprob_fc5_ebtimeF_dtTrue_mxTrue_test_0/
-
results/informer_custom_ftMS_sl126_ll64_pl4_dm512_nh8_el2_dl1_df2048_atprob_fc5_ebtimeF_dtTrue_mxTrue_test_0/metrics.npy
148B
results/informer_custom_ftMS_sl126_ll64_pl4_dm512_nh8_el2_dl1_df2048_atprob_fc5_ebtimeF_dtTrue_mxTrue_test_0/pred.npy
2.13KB
results/informer_custom_ftMS_sl126_ll64_pl4_dm512_nh8_el2_dl1_df2048_atprob_fc5_ebtimeF_dtTrue_mxTrue_test_0/true.npy
2.13KB
results/informer_Sum_ftM_sl126_ll64_pl4_dm512_nh8_el2_dl1_df2048_atprob_fc5_ebtimeF_dtTrue_mxTrue_test_0/
-
results/informer_Sum_ftM_sl126_ll64_pl4_dm512_nh8_el2_dl1_df2048_atprob_fc5_ebtimeF_dtTrue_mxTrue_test_0/metrics.npy
148B
results/informer_Sum_ftM_sl126_ll64_pl4_dm512_nh8_el2_dl1_df2048_atprob_fc5_ebtimeF_dtTrue_mxTrue_test_0/pred.npy
27.13KB
results/informer_Sum_ftM_sl126_ll64_pl4_dm512_nh8_el2_dl1_df2048_atprob_fc5_ebtimeF_dtTrue_mxTrue_test_0/real_prediction.npy
176B
results/informer_Sum_ftM_sl126_ll64_pl4_dm512_nh8_el2_dl1_df2048_atprob_fc5_ebtimeF_dtTrue_mxTrue_test_0/true.npy
27.13KB
results/informer_Sum_ftMS_sl126_ll64_pl4_dm512_nh8_el2_dl1_df2048_atprob_fc5_ebtimeF_dtTrue_mxTrue_test_0/
-
results/informer_Sum_ftMS_sl126_ll64_pl4_dm512_nh8_el2_dl1_df2048_atprob_fc5_ebtimeF_dtTrue_mxTrue_test_0/metrics.npy
148B
results/informer_Sum_ftMS_sl126_ll64_pl4_dm512_nh8_el2_dl1_df2048_atprob_fc5_ebtimeF_dtTrue_mxTrue_test_0/pred.npy
9.13KB
results/informer_Sum_ftMS_sl126_ll64_pl4_dm512_nh8_el2_dl1_df2048_atprob_fc5_ebtimeF_dtTrue_mxTrue_test_0/real_prediction.npy
144B
results/informer_Sum_ftMS_sl126_ll64_pl4_dm512_nh8_el2_dl1_df2048_atprob_fc5_ebtimeF_dtTrue_mxTrue_test_0/true.npy
9.13KB
results/informer_Sum_ftMS_sl126_ll64_pl4_dm512_nh8_el2_dl1_df2048_atprob_fc5_ebtimeF_dtTrue_mxTrue_test_1/
-
results/informer_Sum_ftMS_sl126_ll64_pl4_dm512_nh8_el2_dl1_df2048_atprob_fc5_ebtimeF_dtTrue_mxTrue_test_1/metrics.npy
148B
results/informer_Sum_ftMS_sl126_ll64_pl4_dm512_nh8_el2_dl1_df2048_atprob_fc5_ebtimeF_dtTrue_mxTrue_test_1/pred.npy
2.13KB
results/informer_Sum_ftMS_sl126_ll64_pl4_dm512_nh8_el2_dl1_df2048_atprob_fc5_ebtimeF_dtTrue_mxTrue_test_1/true.npy
2.13KB
utils/
-
utils/__init__.py
-
utils/__pycache__/
-
utils/__pycache__/__init__.cpython-39.pyc
154B
utils/__pycache__/masking.cpython-39.pyc
1.43KB
utils/__pycache__/metrics.cpython-39.pyc
1.42KB
utils/__pycache__/timefeatures.cpython-39.pyc
7.16KB
utils/__pycache__/tools.cpython-39.pyc
3.21KB
utils/masking.py
851B
utils/metrics.py
826B
utils/timefeatures.py
5.43KB
utils/tools.py
2.76KB
资源内容介绍
本篇博客带大家看的是Informer模型进行时间序列预测的实战案例,它是在2019年被提出并在ICLR 2020上被评为Best Paper,可以说Informer模型在当今的时间序列预测方面还是十分可靠的,Informer模型的实质是注意力机制+Transformer模型,Informer模型的核心思想是将输入序列进行自注意力机制的处理,以捕捉序列中的长期依赖关系,并利用Transformer的编码器-解码器结构进行预测,通过阅读本文你可以学会利用个人数据集训练模型。Informer是一种用于长序列时间序列预测的Transformer模型,但是它与传统的Transformer模型又有些不同点,与传统的Transformer模型相比,Informer具有以下几个独特的特点:1. ProbSparse自注意力机制:Informer引入了ProbSparse自注意力机制,该机制在时间复杂度和内存使用方面达到了O(Llog L)的水平,能够有效地捕捉序列之间的长期依赖关系。2. 自注意力蒸馏:通过减少级联层的输入,自注意力蒸馏技术可以有效处理极长的输入序列,提高了模型处理长序列的能力用户评论 (0)
发表评论
相关资源
基与yoloV8姿态检测实现坐、站立、跌倒姿态推理评估(含源代码)
文件名:postTest.zip
文件类型:ZIP
大小:60.19MB
上传者:qq_20377277
更新日期:2025-02-23
基于深度学习的课堂行为识别和考试作弊检测系统的设计与实现(python源码)
文件名:classroom.zip
文件类型:ZIP
大小:105.52MB
上传者:weixin_64136074
更新日期:2025-02-23
CIFAR-100 图片格式数据集
文件名:cifar100.zip
文件类型:ZIP
大小:140.11MB
上传者:weixin_43667077
更新日期:2025-02-23
共享单车数据集(Capital Bikeshare)
文件名:Bike-Sharing-Dataset.zip
文件类型:ZIP
大小:279.04KB
上传者:qq_37456611
更新日期:2025-02-23
Sub_data.zip
文件名:Sub_data.zip
文件类型:ZIP
大小:12.86MB
上传者:qq_37233260
更新日期:2025-02-23
imagenet-sample-images-master.zip
文件名:imagenet-sample-images-master.zip
文件类型:ZIP
大小:103.93MB
上传者:weixin_45829462
更新日期:2025-02-24
NAR-RNN时间序列预测代码(数据集+训练+预测+预测效果对比)
文件名:nar.zip
文件类型:ZIP
大小:274.92KB
上传者:m0_56146217
更新日期:2025-02-24
radar_camera_calibration__manual.zip
文件名:radar_camera_calibration__manual.zip
文件类型:ZIP
大小:4.67MB
上传者:hgz_gs
更新日期:2025-02-24
ChatGPT中文使用手册
文件名:ChatGPT中文使用手册.zip
文件类型:ZIP
大小:137.49KB
上传者:qq_41838305
更新日期:2025-02-24
cs231n作业+数据集.zip
文件名:作业.zip
文件类型:ZIP
大小:166.86MB
上传者:qq_38193114
更新日期:2025-02-24